Mastering Java Machine Learning

Mastering Java Machine Learning

Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science.
This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today.
On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain.
What you will learn Master key Java machine learning libraries, and what kind of problem each can solve, with theory and practical guidance. Explore powerful techniques in each major category of machine learning such as classification, clustering, anomaly detection, graph modeling, and text mining. Apply machine learning to real-world data with methodologies, processes, applications, and analysis. Techniques and experiments developed around the latest specializations in machine learning, such as deep learning, stream data mining, and active and semi-supervised learning. Build high-performing, real-time, adaptive predictive models for batch- and stream-based big data learning using the latest tools and methodologies. Get a deeper understanding of technologies leading towards a more powerful AI applicable in various domains such as Security, Financial Crime, Internet of Things, social networking, and so on. Table of Contents Revisiting Machine Learning Basics Practical Approach in Real-World Supervised Learning Advanced Topics in Clustering and Anomaly Detection Methodology for Real-world Semi-Supervised Learning Real-time Stream Machine Learning Probabilistic Graph Modelling Deep Learning Probabilistic Graph Modeling and Graph Data Learning Related Topics in Machine Learning Linear Algebra Probability

Download Now Read Online

Similar Free eBook

Mastering Java Machine Learning


Mastering Java Machine Learning Download Now Read Online

Author by : Dr. Uday Kamath
Languange Used : en
Release Date : 2017-07-11
Publisher by : Packt Publishing Ltd






Mastering Java Machine Learning


Mastering Java Machine Learning Download Now Read Online

Author by : Uday Kamath
Languange Used : en
Release Date : 2017-04-28
Publisher by :






Mastering Java For Data Science


Mastering Java For Data Science Download Now Read Online

Author by : Alexey Grigorev
Languange Used : en
Release Date : 2017-04-27
Publisher by : Packt Publishing Ltd






Machine Learning End To End Guide For Java Developers


Machine Learning End To End Guide For Java Developers Download Now Read Online

Author by : Richard M. Reese
Languange Used : en
Release Date : 2017-10-05
Publisher by : Packt Publishing Ltd






Machine Learning In Java


Machine Learning In Java Download Now Read Online

Author by : Bostjan Kaluza
Languange Used : en
Release Date : 2016-04-29
Publisher by : Packt Publishing Ltd






Hands On Artificial Intelligence With Java For Beginners


Hands On Artificial Intelligence With Java For Beginners Download Now Read Online

Author by : Nisheeth Joshi
Languange Used : en
Release Date : 2018-08-31
Publisher by : Packt Publishing Ltd






Java Deep Learning Essentials


Java Deep Learning Essentials Download Now Read Online

Author by : Yusuke Sugomori
Languange Used : en
Release Date : 2016-05-30
Publisher by : Packt Publishing Ltd






Leave a Reply

Your email address will not be published. Required fields are marked *